47 research outputs found

    Advanced space engine preliminary design

    Get PDF
    A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs

    Scattering in flatland: Efficient representations via wave atoms

    Get PDF
    This paper presents a numerical compression strategy for the boundary integral equation of acoustic scattering in two dimensions. These equations have oscillatory kernels that we represent in a basis of wave atoms, and compress by thresholding the small coefficients to zero. This phenomenon was perhaps first observed in 1993 by Bradie, Coifman, and Grossman, in the context of local Fourier bases \cite{BCG}. Their results have since then been extended in various ways. The purpose of this paper is to bridge a theoretical gap and prove that a well-chosen fixed expansion, the nonstandard wave atom form, provides a compression of the acoustic single and double layer potentials with wave number kk as O(k)O(k)-by-O(k)O(k) matrices with O(k1+1/)O(k^{1+1/\infty}) nonnegligible entries, with a constant that depends on the relative 2\ell_2 accuracy \eps in an acceptable way. The argument assumes smooth, separated, and not necessarily convex scatterers in two dimensions. The essential features of wave atoms that enable to write this result as a theorem is a sharp time-frequency localization that wavelet packets do not obey, and a parabolic scaling wavelength \sim (essential diameter)2{}^2. Numerical experiments support the estimate and show that this wave atom representation may be of interest for applications where the same scattering problem needs to be solved for many boundary conditions, for example, the computation of radar cross sections.Comment: 39 page

    Normative productivity of the global vegetation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The biosphere models of terrestrial productivity are essential for projecting climate change and assessing mitigation and adaptation options. Many of them have been developed in connection to the International Geosphere-Biosphere Program (IGBP) that backs the work of the Intergovernmental Panel on Climate Change (IPCC). In the end of 1990s, IGBP sponsored release of a data set summarizing the model outputs and setting certain norms for estimates of terrestrial productivity. Since a number of new models and new versions of old models were developed during the past decade, these normative data require updating.</p> <p>Results</p> <p>Here, we provide the series of updates that reflects evolution of biosphere models and demonstrates evolutional stability of the global and regional estimates of terrestrial productivity. Most of them fit well the long-living Miami model. At the same time we call attention to the emerging alternative: the global potential for net primary production of biomass may be as high as 70 PgC y<sup>-1</sup>, the productivity of larch forest zone may be comparable to the productivity of taiga zone, and the productivity of rain-green forest zone may be comparable to the productivity of tropical rainforest zone.</p> <p>Conclusion</p> <p>The departure from Miami model's worldview mentioned above cannot be simply ignored. It requires thorough examination using modern observational tools and techniques for model-data fusion. Stability of normative knowledge is not its ultimate goal – the norms for estimates of terrestrial productivity must be evidence-based.</p

    Natural Intelligence and Anthropic Reasoning

    Get PDF
    This paper aims to justify the concept of natural intelligence in the biosemiotic context. I will argue that the process of life is (i) a cognitive/semiotic process and (ii) that organisms, from bacteria to animals, are cognitive or semiotic agents. To justify these arguments, the neural-type intelligence represented by the form of reasoning known as anthropic reasoning will be compared and contrasted with types of intelligence explicated by four disciplines of biology – relational biology, evolutionary epistemology, biosemiotics and the systems view of life – not biased towards neural intelligence. The comparison will be achieved by asking questions related to the process of observation and the notion of true observers. To answer the questions I will rely on a range of established concepts including SETI (search for extraterrestrial intelligence), Fermi’s paradox, bacterial cognition, versions of the panspermia theory, as well as some newly introduced concepts including biocivilisations, cognitive/semiotic universes, and the cognitive/semiotic multiverse. The key point emerging from the answers is that the process of cognition/semiosis – the essence of natural intelligence – is a biological universal.Brunel University Londo

    Mathematics, metaphor and economic visualisability

    Get PDF
    The mathematisation of economic theory is an issue that has been discussed many times. These discussions have been dominated by debate about the appropriateness of the deductive method for economics. This rather narrow focus has pushed a number of important methodological issues regarding the nature of mathematical economics aside. In this paper, it is argued that mathematical economics involves the construction of metaphor and is therefore metaphorical in nature. Whilst mathematical economics has been responsible for what are generally regarded to be notable theoretical achievements and retains a place in economics as an apparatus for the development of economic science, the meaning of mathematical economics is restricted to those elements of economic reality that may be talked about in terms of mathematical objects and there is a danger of declining economic visualisability as the metaphors of mathematical economics become less vivid

    Warship propulsion system control

    No full text
    corecore